2,529 research outputs found

    A-scan ultrasound system for real-time puncture safety assessment during percutaneous nephrolithotomy

    Get PDF
    Background: Kidney stone is a major universal health problem, affecting 10% of the population worldwide. Percutaneous nephrolithotomy is a first-line and established procedure for disintegration and removal of renal stones. Its surgical success depends on the precise needle puncture of renal calyces, which remains the most challenging task for surgeons. This work describes and tests a new ultrasound based system to alert the surgeon when undesirable anatomical structures are in between the puncture path defined through a tracked needle. Methods: Two circular ultrasound transducers were built with a single 3.3-MHz piezoelectric ceramic PZT SN8, 25.4 mm of radius and resin-epoxy matching and backing layers. One matching layer was designed with a concave curvature to work as an acoustic lens with long focusing. The A-scan signals were filtered and processed to automatically detect reflected echoes. Results: The transducers were mapped in water tank and tested in a study involving 45 phantoms. Each phantom mimics different needle insertion trajectories with a percutaneous path length between 80 and 150 mm. Results showed that the beam cross-sectional area oscillates around the ceramics radius and it was possible to automatically detect echo signals in phantoms with length higher than 80 mm. Conclusions: This new solution may alert the surgeon about anatomical tissues changes during needle insertion, which may decrease the need of X-Ray radiation exposure and ultrasound image evaluation during percutaneous puncture.The authors acknowledge to Foundation for Science and Technology (FCT) - Portugal for the fellowships with references: SFRH/BD/74276/2010 and the Brazilian agencies CAPES and CNPq. The present submission corresponds to original research work of the authors and has never been submitted elsewhere for publication.info:eu-repo/semantics/publishedVersio

    Specific Wheat Fractions Influence Hepatic Fat Metabolism in Diet-Induced Obese Mice

    Get PDF
    Low whole grain consumption is a risk factor for the development of non-communicable diseases such as type 2 diabetes. Dietary fiber and phytochemicals are bioactive grain compounds, which could be involved in mediating these beneficial effects. These compounds are not equally distributed in the wheat grain, but are enriched in the bran and aleurone fractions. As little is known on physiological effects of different wheat fractions, the aim of this study was to investigate this aspect in an obesity model. For twelve weeks, C57BL/6J mice were fed high-fat diets (HFD), supplemented with one of four wheat fractions: whole grain flour, refined white flour, bran, or aleurone. The different diets did not affect body weight, however bran and aleurone decreased liver triglyceride content, and increased hepatic n-3 polyunsaturated fatty acid (PUFA) concentrations. Furthermore, lipidomics analysis revealed increased PUFA concentration in the lipid classes of phosphatidylcholine (PC), PC-ether, and phosphatidylinositol in the plasma of mice fed whole grain, bran, and aleurone supplemented diets, compared to refined white flour. Furthermore, bran, aleurone, and whole grain supplemented diets increased microbial α-diversity, but only bran and aleurone increased the cecal concentrations of short-chain fatty acids. The effects on hepatic lipid metabolism might thus at least partially be mediated by microbiota-dependent mechanism

    Effective interactions between star polymers and colloidal particles

    Full text link
    Using monomer-resolved Molecular Dynamics simulations and theoretical arguments based on the radial dependence of the osmotic pressure in the interior of a star, we systematically investigate the effective interactions between hard, colloidal particles and star polymers in a good solvent. The relevant parameters are the size ratio q between the stars and the colloids, as well as the number of polymeric arms f (functionality) attached to the common center of the star. By covering a wide range of q's ranging from zero (star against a flat wall) up to about 0.75, we establish analytical forms for the star-colloid interaction which are in excellent agreement with simulation results. A modified expression for the star-star interaction for low functionalities, f < 10 is also introduced.Comment: 37 pages, 14 figures, preprint-versio

    Exotic fluids and crystals of soft polymeric colloids

    Full text link
    We discuss recent developments and present new findings in the colloidal description of soft polymeric macromolecular aggregates. For various macromolecular architectures, such as linear chains, star polymers, dendrimers and polyelectrolyte stars, the effective interactions between suitably chosen coordinates are shown to be ultrasoft, i.e., they either remain finite or diverge very slowly at zero separation. As a consequence, the fluid phases have unusual characteristics, including anomalous pair correlations and mean-field like thermodynamic behaviour. The solid phases can exhibit exotic, strongly anisotropic as well as open crystal structures. For example, the diamond and the A15-phase are shown to be stable at sufficiently high concentrations. Reentrant melting and clustering transitions are additional features displayed by such systems, resulting in phase diagrams with a very rich topology. We emphasise that many of these effects are fundamentally different from the usual archetypal hard sphere paradigm. Instead, we propose that these fluids fall into the class of mean-field fluids.Comment: 22 pages, uses iopart.cls and iopart10.clo; submitted to Journal of Physics Condensed Matter, special issue in honour of professor Peter Puse

    Can filesharers be triggered by economic incentives? Results of an experiment

    Get PDF
    Illegal filesharing on the internet leads to considerable financial losses for artists and copyright owners as well as producers and sellers of music. Thus far, measures to contain this phenomenon have been rather restrictive. However, there are still a considerable number of illegal systems, and users are able to decide quite freely between legal and illegal downloads because the latter are still difficult to sanction. Recent economic approaches account for the improved bargaining position of users. They are based on the idea of revenue-splitting between professional sellers and peers. In order to test such an innovative business model, the study reported in this article carried out an experiment with 100 undergraduate students, forming five small peer-to-peer networks.The networks were confronted with different economic conditions.The results indicate that even experienced filesharers hold favourable attitudes towards revenue-splitting.They seem to be willing to adjust their behaviour to different economic conditions

    Phase separation in star polymer-colloid mixtures

    Get PDF
    We examine the demixing transition in star polymer-colloid mixtures for star arm numbers f=2,6,16,32 and different star-colloid size ratios. Theoretically, we solve the thermodynamically self-consistent Rogers-Young integral equations for binary mixtures using three effective pair potentials obtained from direct molecular computer simulations. The numerical results show a spinodal instability. The demixing binodals are approximately calculated, and found to be consistent with experimental observations.Comment: 4 pages, 4 figures, submitted to PR

    Exploring the photon-number distribution of bimodal microlasers with a transition edge sensor

    Get PDF
    The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework ERC Grant Agreement No. 615613, within the EURAMET joint research project MIQC2 from the European Union's Horizon 2020 Research and Innovation Programme and the EMPIR Participating States and from the German Research Foundation within the project RE2974/10-1. The authors thank the State of Bavaria for financial support.A photon-number resolving transition edge sensor (TES) is used to measure the photon-number distribution of two microcavity lasers. The investigated devices are bimodal microlasers with similar emission intensity and photon statistics with respect to the photon auto-correlation. Both high-ÎČ microlasers show partly thermal and partly coherent emission around the lasing threshold. For higher pump powers, the strong mode of microlaser { A } emits Poissonian distributed photons while the emission of the weak mode is thermal. In contrast, laser { B } shows a bistability resulting in overlayed thermal and Poissonian distributions. While a standard Hanbury Brown and Twiss experiment cannot distinguish between simple thermal emission of laser { A } and the temporal mode switching of the bistable laser { B }, TESs allow us to measure the photon-number distribution which provides important insight into the underlying emission processes. Indeed, our experimental data and its theoretical description by a master equation approach show that TESs are capable of revealing subtle effects like mode switching of bimodal microlasers. As such our studies clearly demonstrate the benefit and importance of investigating nanophotonic devices via photon-number resolving transition edge sensors.PostprintPeer reviewe

    Scaling of Star Polymers with one to 80 Arms

    Full text link
    We present large statistics simulations of 3-dimensional star polymers with up to f=80f=80 arms, and with up to 4000 monomers per arm for small values of ff. They were done for the Domb-Joyce model on the simple cubic lattice. This is a model with soft core exclusion which allows multiple occupancy of sites but punishes each same-site pair of monomers with a Boltzmann factor v<1v<1. We use this to allow all arms to be attached at the central site, and we use the `magic' value v=0.6v=0.6 to minimize corrections to scaling. The simulations are made with a very efficient chain growth algorithm with resampling, PERM, modified to allow simultaneous growth of all arms. This allows us to measure not only the swelling (as observed from the center-to-end distances), but also the partition sum. The latter gives very precise estimates of the critical exponents Îłf\gamma_f. For completeness we made also extensive simulations of linear (unbranched) polymers which give the best estimates for the exponent Îł\gamma.Comment: 7 pages, 7 figure

    Lyapunov exponents and transport in the Zhang model of Self-Organized Criticality

    Full text link
    We discuss the role played by the Lyapunov exponents in the dynamics of Zhang's model of Self-Organized Criticality. We show that a large part of the spectrum (slowest modes) is associated with the energy transpor in the lattice. In particular, we give bounds on the first negative Lyapunov exponent in terms of the energy flux dissipated at the boundaries per unit of time. We then establish an explicit formula for the transport modes that appear as diffusion modes in a landscape where the metric is given by the density of active sites. We use a finite size scaling ansatz for the Lyapunov spectrum and relate the scaling exponent to the scaling of quantities like avalanche size, duration, density of active sites, etc ...Comment: 33 pages, 6 figures, 1 table (to appear

    Theory for the ultrafast ablation of graphite films

    Full text link
    The physical mechanisms for damage formation in graphite films induced by femtosecond laser pulses are analyzed using a microscopic electronic theory. We describe the nonequilibrium dynamics of electrons and lattice by performing molecular dynamics simulations on time-dependent potential energy surfaces. We show that graphite has the unique property of exhibiting two distinct laser induced structural instabilities. For high absorbed energies (> 3.3 eV/atom) we find nonequilibrium melting followed by fast evaporation. For low intensities above the damage threshold (> 2.0 eV/atom) ablation occurs via removal of intact graphite sheets.Comment: 5 pages RevTeX, 3 PostScript figures, submitted to Phys. Re
    • 

    corecore